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A finite-element method has been developed to model inertial waves in a frustum of 
a cone, since analytical methods have proved inadequate. The governing Poincar6 
problem is posed as a variational principle and approximate eigensolutions are 
computed. The numerical results are used to complete the interpretation of the 
experimental results of Beardsley (1970) for a frustum of a cone. The significant role 
played by characteristic surfaces partly explains the enigmatic nature of the ill-posed 
boundary-value problem that describes inertial wave resonances. 

1. Introduction 
An inertial wave is a periodic disturbance or normal mode of an incompressible 

fluid that is rotating almost rigidly in a container. A stationary observer sees the flow 
as an inward-outward faster-slower vortex. The low-order modes with simple 
structure are easily excited and may occur spontaneously even in situations not 
designed for them. For instance, these fluid modes are of some concern in the fields 
of aerospace and ballistics. 

It is not unusual for a space vehicle or artillery shell to hold a liquid-filled tank and 
to be spin-stabilized. These features are contradictory and can cause the satellite or 
projectile to tumble out of control. It was shown by Stewartson (1959) that the 
rotation of a top containing liquid may become unstable when the nutation of the 
container and an oscillation of the liquid are nearly resonant. The nutation acts as a 
forcing for the oscillation which is thus steadily excited. If the container imparts 
some energy to the liquid, then reciprocally the liquid must exert a torque on the 
container. The oscillation acts simultaneously as a forcing for the nutation which is 
thus divergent. This effect of inertial waves has been the subject of recent studies by 
Pohl (1984) and Murphy (1986), etc. A remedy might well be to ascertain what sort 
of tank avoids sloshing fluid. 

The role of rotation in geophysical fluid dynamics has been well known for both the 
atmosphere and oceans. The dynamics of the Earth’s fluid core have recently also 
been studied in this context by Aldridge, Lumb & Henderson (1989), and for this 
application the importance of an irregular boundary has been realized. The present 
work is a first step toward understanding what happens to the inertial wave 
spectrum when a rotating fluid is in a conical cavity. 

A global inertial wave belongs to a set of distinct eigenmodes with a discrete 
spectrum of eigenfrequencies, but not every shape of cavity allows these in a fluid. 
This inconsistency is reflected in the mathematics. The governing differential 
equation and boundary condition together constitute the so-called Poincark problem. 
The differential equation is one of the hyperbolic type with characteristic lines that 

11.2 
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lie in conical surfaces and have frequency dependent slope. The boundary condition 
is generally not one of the types usually applicable. This peculiar combination means 
that the existence of any eigensolutions is sensitive to the geometry of the boundary. 
That is, the problem is ill-posed as pointed out by Stewartson & Rickard (1969). This 
entails intractability, and analytical methods are generally inadequate except for a 
few cases. A separation of variables was successful for Kelvin (1880) or Bryan (1889), 
but current interest is in less regular geometries than cylinders or spheres. 
Consequently, recourse must be had to numerical methods for most cases. An 
approximate algebraic problem may then be solved instead. 

There are at least two precedents for computational models of inertial waves on 
the basis of variational principles. For instance, Aldridge (1972) applied a classical 
Ritz method, whereas McIntyre & Tanner (1987) applied a modern finite-element 
Ritz method. The latter approach is also taken below in much the same way, but 
there is little comparison with regard to emphasis and cases. In particular, how the 
numerical method responds to a case where no eigensolutions exist has not been 
addressed before. The overall conclusion is that for axisymmetric geometries the 
Poincar6 problem is well suited to the finite-element method and accurate 
approximations for low-order eigensolutions may be obtained with coarse meshes. 

A family of three geometries is considered in turn. First, the cylinder is a 
benchmark case where the eigensolutions are well known. Greenspan (1968) reviewed 
analytical expressions for the eigenfrequencies and eigenfunctions that can both be 
referred to for verification. Secondly, the frustum is a practical case where the 
eigensolutions are barely known. Beardsley ( 1970) discovered experimental evidence 
for at least three eigenfrequencies and inferred that the eigenfunctions are 
deformations of those for a cylinder. The identification of these resonances as 
distorted inertial waves has not previously been confirmed by theoretical results. 
Thirdly, the cone is an exceptional case where the eigensolutions are likely non- 
existent. Greenspan (1969) theoretically predicted that no global eigenmodes would 
be found because the energy of any local disturbances would be repeatedly reflected 
along the characteristic lines toward the apex that acts as a sink. Beardsley (1970) 
experimentally verified both the absence of eigenmodes and the manifestation of 
characteristic lines. The similar lack of any eigensolutions has not previously been 
confirmed by attempting to solve the problem. 

2. Method 
Poincarh (1910) shows that for inertial waves the governing problem is 

W.WSP-(4/h2)V.RR.VSP = 0, (1) 
fi  -V@-  (4/h2) fi-fl .  W@ = (2/ih) fi-l x VSP, (2) 

which consists of a differential equation and accompanying boundary condition. It 
is assumed that inertia dominates viscosity and nonlinearity so damping and 
interaction of modes are negligible. The domain is a volume 7 bounded by a surface 
C where a variable unit vector f i  defines an outward normal. A constant unit vector 
k defines the rotation axis. The dimensionless eigenfunction @ is the amplitude of the 
reduced pressure. A temporal dependence cc exp (iht) has already been separated. 
The dimensionless eigenfrequency h is confined to the bandwidth 0 < IAJ < 2 and is 
pure real. This is discussed in more detail by Greenspan (1968). 

The Poincar6 problem posed equivalently as a variational principle is 

dr9[@] = 0 (3) 
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which expresses that the functional 9"q5] is stationary about each extremal @ 
sought. This formulation reveals that the differential equation is an Euler one and 
that the boundary condition is a natural one. The functional is derived in much the 
same way as by Smylie & Rochester (1986). A general form that follows from the 
linear Hermitian operator is 

but a particular form can be obtained by enforcing the boundary condition. Hence, 
for the whole problem an appropriate functional is 

LY[q5] = &(M2(Vq5*-Vq5)--4(Vq5*.l;f.V$))d~+- iAJ x (q5*((Rx Vq5).A)dC, (5 )  

since the extremals will satisfy both requirements of an eigensolution. 
A scaled system of cylindrical polar coordinates ( r ,  8, z) is adopted. It is a sim- 

plification to assume an axisymmetric domain. An azimuthal dependence a exp (ik8) 
is separated so the domain becomes a surface Q bounded by both a curve 1 and the 
z-axis. Hence, the functional and boundary condition are 

2[$] = J[A2r@y-(4-A2)r(!f)s+c$2]ds+2kA r 5 (i.A)$2dZ, (6) 

2k 
(7) 

where the trial function $ depends on two coordinates ( r ,  z) only. The r = 0 
singularity imposes the artificial boundary condition that $ = 0 or a$-/ar = 0 along 
the z-axis when k > 0 or k = 0 respectively. 

The low-order extremals of the functional are obtained by resorting to a k i t e -  
element Ritz method, which is discussed in more detail by Davies (1980) and others. 
First, in accordance with the Ritz method, a trial function is expanded as a series of 
chosen basis functions combined by unknown weights. This is a truncation of the 
problem, since only a limited number of degrees of freedom are admitted. The 
extremals are found by optimization of the adjustable weights for fixed basis 
functions. Secondly, in accordance with the finite-element method, the basis 
functions are chosen piecewise so each exists over a subdomain but vanishes 
elsewhere. The extremals are found as patchworks after dividing the domain into a 
mesh of elements connected at nodes. Accordingly, for substitution into the 
functional the trial function is 

where Nt(r,  z) is a basis function to be defined on the eth element and 8, is the ith 
weight to be found. This is a superposition over each element and a juxtaposition 
over the whole mesh. There is almost a dissection of the problem, but the pieces are 
weakly coupled through the weights. 

Figure 1 shows three example meshes, one for each case considered. The meshes are 
composed in large measure of rectangular elements, but with an admixture of 
triangular elements wherever the boundary slopes. It is best that a mesh of elements 
be a complete reconstruction of the original domain. The rectangular elements each 
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16-node mesh 17-node mesh 19-node mesh 
Cylinder Frustum Cone 

FIGURE 1. An example of meshes for the cylinder, frustum and cone. 

have four proper nodes located a t  the vertices. These are just standard Quad4 
elements. The triangular elements each have three proper nodes located a t  the 
vertices, but also one virtual node imagined at the missing vertex. These are ad hoc 
half-Quad4 elements, as opposed to standard Tria3 elements. The two sorts of 
elements chosen are compatible. 

The basis functions are chosen so that each weight denotes the value of either the 
trial function $ or one of its derivatives $,, $ z ,  +Tz at some nodal point. In this way 
most weights have physical significance and pieces of the trial function are coupled. 
A basis function N: exists only if the ith weight Si corresponds with any node of the 
eth element. There are sixteen i associated with each e, but up to four e associated 
with each i as well. The basis functions are piecewise bicubic Hermite interpolation 
polynomials, which ensure that the extremals obtained are continuous and smooth 
even between the elements. 

The ensuing algebraic problem is 
K6 = 0, (9) 

where K is a matrix of coefficients and 6 is a vector of weights. This arises since the 
functional (+,$) is a quadratic form and partial derivatives with respect to the 
weights must vanish. In  terms of the frequency the coefficient matrix is 

K = h2A+hB+C, (10) 

where as a rule the numerous entries are 

B, = 2 k C  (?.A)N~N~dl", 
e J  

C ,  = - 4 Z  r L A d c r e ,  I aNeaNe aZ a2 
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although some rows are replaced to explicitly enforce the boundary conditions a t  the 
peripheral nodes. If k is zero then B is a zero matrix. The closing frequency 
restriction is 

IA2A+hB+CI = 0, (12) 

which is that  the determinant of the coefficient matrix must vanish for a non-trivial 
vector of weights to exist. 

Therefore, the low-order eigenfrequencies are obtained as the roots of some secular 
equation, and the corresponding eigenvectors of weights are obtained as the solutions 
of systems of linear homogeneous equations. A few eigenfunctions are plotted at 
additional points in each element by interpolation between the nodes from the 
weights and basis functions. The secondary numerical methods used to solve the 
algebraic problem are kept quite straightforward. 

The coefficient matrix is large, on the order of 100 x 100 entries, but sparse. A 
narrow diagonal band contains all the non-zero entries or information, so this alone 
is stored and manipulated. The entries of the coefficient matrix are sums of 
symmetric bilinear forms (Nf, N f ) ,  which are double integrals with integrands that are 
polynomials or rational functions. The majority, due to rectangular elements, are 
evaluated from general expressions when reduced by factorization and analytical 
integration. The remainder, due to  triangular elements, are evaluated or estimated by 
numerical quadrature with 7- or 16-point Gauss-Legendre formulas. 

The determinant of the coefficient matrix is some high-degree polynomial function 
of the frequency. To find the zeros of such a pathological function is tricky. The roots 
are located using the bisection method, which is orderly and infallible for isolated 
single roots in a fixed bandwidth. At each frequency sampled the sign of the 
determinant is found using Gaussian elimination with scaled column pivoting. Any 
propagation of rounding error due to  ill-conditioning does not appear fatal. An 
eigenvector of weights is obtained, once the corresponding eigenfrequency is located, 
by back-substituting the coefficient matrix which is in upper triangular form. 

The freedom or resolution of the trial function is dependent on the number of nodes 
or elements in the mesh. As the mesh is gradually refined there ought to be an 
increase in the accuracy and number of eigensolutions obtained so that previous ones 
are improved while additional ones are introduced. Hence, it is the eigensolutions 
with the simplest structure that tend to  be obtained the earliest and best. A 
succession of approximations for the same eigensolution ought to be either 
convergent or spurious. 

3. Results 
The eigenmodes are identified with integers (m, k ,  n)  which loosely stated are the 

(radial, azimuthal, vertical) wavenumbers. These indicate how low the order of 
complexity in the structure of an eigenfunction is with respect to each direction. The 
eigenfunctions by nature are each distinctively organized into various cells. For all 
the cases considered, k = 0 means the cells are axisymmetric, while m and n denote 
respectively how many cell walls are crossed by a line drawn radially or vertically. 

The first case considered is a cylinder. This is required for verification of the 
numerical method. A comparison is made between the eigenfrequencies obtained and 
those known from an expression derived by Kelvin (1880), and confirmed by the 
pattern of cells in the eigenfunction obtained. The eigensolutions recovered are those 
with the smallest wavenumbers, and those of lower order do tend to have higher 
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FIGURE 2. The isobar charts of the eigenfunctions obtained for the frustum with an 
80-node mesh. 

Nodes 4 0 2  A103 L l P  

11 1.1723 1.3821 1.5597 
48 1.1219 1.3310 1.5141 
67 1.1165 1.3252 1.5098 
80 1.1187 1.3277 1.5154 
94 1.1190 1.3274 1.5160 

Numerical 1.12 1.33 1.52 
Experimental 1.12 1.30 1.48 

TABLE 1. The eigenfrequencies recovered for a frustum 

accuracy. As the mesh is refined along an axis the eigensolutions recovered do include 
additional ones with larger wavenumber and previous ones with improved accuracy. 
Thus there is convergence, and very rapidly. A 25-node mesh is enough to recover 
several low-order eigenfrequencies within 0.1 YO tolerance and the eigenfunctions 
with somewhat less accuracy. In short, the numerical method behaves as predicted. 

The second case considered is a frustum. There are three or four resonant 
frequencies distinctly revealed in the experimental data of Beardsley (1970). An 11- 
node mesh allows the numerical method to recover none other than four comparable 
eigenfrequencies in that bandwidth. This coincidence shows that the numerical 
method and experimental process are compatible since both have a low-order bias. 
Whether a study is experimental or numerical, the eigenmodes with the simplest 
structure are the easiest to excite or recover. It is convenient to locate these 
eigenfrequencies with a coarse mesh and then track them through several 
refinements. 

At the top of table 1 three sequences of like eigenfrequencies recovered with 
various meshes are shown. The frustum requires a more refined mesh than the 
cylinder to recover low-order eigenfrequencies as accurately. Thus there is 
convergence, but less rapidly. This is predictable to the extent that the problem is 
less well-posed for a frustum than for a cylinder. A t  the bottom of table 1 a 
comparison between the numerical and experimental estimates of these eigen- 
frequencies is shown. Of course, the numerical values are those the method 
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FIGURE 3. The cell charts of the eigenfunctions obtained for the frustum. 

converged to, and the experimental values are those reported by Beardsley (1970). 
These values are practically the same, since the latter are all uncertain by a few units 
in the second decimal place. 

It is apparent that at  least in principle the eigensolutions for the frustum are 
perturbations of those for a cylinder. A footnote of Beardsley (1970) remarks that 
both phase and amplitude measurements suggest the resonance at  h = 1.12 is 
probably a distorted (1, 0 ,2 )  eigenmode even though the side leans sharply. Figure 2 
shows isobar charts of the three eigenfunctions obtained with an 80-node mesh. It 
is clear that in each chart the isobars divide naturally into several cells and that in 
each cell the isobars mark a relative low or high. Figure 3 shows cell charts of the 
three eigenfunctions. It seems from many cell charts that the eigenfunctions for the 
frustum may consist of peculiar adaptations to that shape as well as perturbations 
or truncations of those for a cylinder. However, there is an analogy between the 
structure of the predominant eigenfunctions for both geometries. The three 
eigensolutions obtained for the frustum are surely perturbations of the n = 2 , 3 , 4  
members in the series of (1 ,0 ,n)  eigensolutions known for a cylinder. It is notable 
that the high-order eigenfunctions in this series for the frustum are the least distorted 
and so the most like their counterparts for a cylinder. Moreover, the low-order 
eigenfunctions obtained suggest a few characteristic lines and possible dis- 
continuities. 

A perturbed (1,0,1) eigenmode is conspicuous by its absence. This stresses that the 
similarity between the frustum and a cylinder is not complete. The experimental 
data of Beardsley (1970) has no evidence for a perturbed (1,0,1) eigenmode, since the 
three chief resonances are all otherwise identified. A possible explanation is that 
damping of the fundamental eigenmode is much enhanced by the deformation going 
from a cylinder to a frustum. This same effect is seen going from a sphere to a shell 
in the experimental data of Aldridge (1967). The numerical method also leads to no 
evidence for a perturbed (1 ,0 ,1)  eigensolution, unless the bottom radius is increased 
to more than roughly 60% of the top one. A small relative amplitude cannot be 
confirmed since viscosity is neglected. 

There is an elegant procedure to generate potential eigenfrequencies by ray tracing 
along special characteristic lines as demonstrated by Hrailand (1962). A similar 
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FIGURE 4. An example of tracing characteristics to estimate an eigenfrequency for the frustum. 

geometrical method is used to  estimate the perturbed (1,0,  n )  eigenfrequencies by 
tracing two special paths each consisting of 2n characteristic line segments. An 
example of this technique for the perturbed (1,0,3) eigenfrequency is shown in 
figure 4. A slightly different estimate of the eigenfrequency is inferred from the slope 
of the line segments in each path. The eigenfrequencies obtained by this geometrical 
method and by the numerical method are in close agreement up to n = 7 at least. 
There is no discrepancy greater than 0.06, and the spread decreases as n increases. 
The perturbed (1,0,  1) eigenfrequency is again an exception, since i t  is not possible 
to trace the first path with just two line segments. 

The third case considered is a cone. Beardsley (1970) remarks that both phase and 
amplitude measurements indicate an absence of any eigenmodes. The perturbed 
(1 ,  0 ,2)  eigensolution is singled out and revealed by the numerical method as bogus. 
This is suggested by a sequence of like eigenfrequencies generated with several 
meshes. The cone seems to require a much more refined mesh than even a frustum 
to obtain the eigenfrequency with the same accuracy. Thus there is not proper 
convergence, and the eigensolution is not genuine. This is emphasized by the 
corresponding sequence of unlike eigenfunctions generated. As the mesh is refined the 
evolving structure of the supposed eigenfunction is eventually not at all of the sort 
predicted. An isobar chart of the spurious eigenfunction generated with a 64-node 
mesh is shown in figure 5 .  

The characteristic lines evident in this isobar chart are shown in figure 6. There is 
a narrow diagonal band in the middle that clearly shows the upward sloping 
characteristics. There is a large diagonal band a t  the top that clearly shows the 
downward sloping characteristics. It also appears that in a sense the downward 
characteristics are crossing over and interfering with the upward characteristics to 
create cells nearly the size of the elements. At a slightly lower frequency the upward 
characteristics would be parallel with the boundary. It seems the spurious 
eigensolution generated is tending towards that limit and ever smaller cells as the 
mesh is refined. 

It is desirable to find how the (1 ,  0 ,2)  eigenmode fails to complete the transition 
from frustum to cone. The mesh is gradually changed to draw the frustum to a point 
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FIGURE 5 FIGURE 6 

FIGURE 5. An isobar chart of the eigenfunction generated for the cone with a @-node mesh. 
FIGURE 6. The characteristics observed in the isobar chart for the cone. 
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FIGURE 7 .  The disappearance of the eigenfrequency at the critical shape with a 38-node mesh. 
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FIQURE 8. An isobar chart of the eigenfunction obtained for the critical shape with a 
38-node mesh. 

but is not refined overall. A ratio of the bottom radii is used as a measure of the 
shape, which assigns the value of unity to the original frustum and of zero to the 
cone. As the shape is lowered the magnitudes of the eigenfrequencies are also 
generally decreased. However, there is a critical shape below which the (1,0,2) 
eigenfrequency suddenly disappears. Figure 7 shows the disappearance of the 
eigenfrequency and its companion when tracked with a 38-node mesh. A 
mathematical explanation for this may be inferred. The eigenfrequency is one of a 
pair of zeros that bracket a local maximum of a secular polynomial. As the critical 
shape is approached, the plateau falls toward the axis and the zeros move closer 
together, until abruptly the plateau falls below the axis and both zeros disappear. 

A coarse mesh might not be able to resolve much of the difference between an 
almost critical shape and the cone. As the mesh is refined the critical shape tends to 
grow more pointed. However, it is not clear whether the limit of the critical shape is 
the cone. Figure 8 shows an isobar chart of the eigenfunction obtained for the critical 
shape with a 38-node mesh. The cells and characteristics that  are the main features 
of the isobar charts for the original frustum and cone are combined. 

The above results are a significant supplement to  those of Beardsley (1970). It has 
been shown that a basic use of a numerical method leads to insight for classic cases 
of the Poinear6 problem. Specifically, a theoretical model of inertial waves has been 
used to clarify a pair of experiments after a long hiatus. This type of study has been 
hindered by the difficult mathematical problems, but the advent of finite-element 
methods promises a revival. 
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Signal Canada Inc. The authors are grateful to Dr M. E. McIntyre for helpful 
suggestions. 
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